

Antiretroviral Resistance in the INSTI Era

Mechanisms of Resistance in Human Immunodeficiency Virus

Dr. Mert A. Kuşkucu

Koç University School of Medicine,

Department of Medical Microbiology

Koç University İşbank Center for Infectious Diseases

Health Topics >

< Back to Treatment & Care

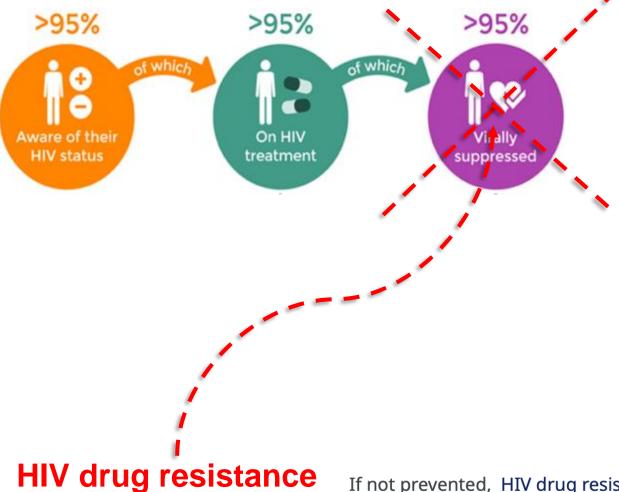
HIV drug resistance

Global action plan and strategy

Prevention

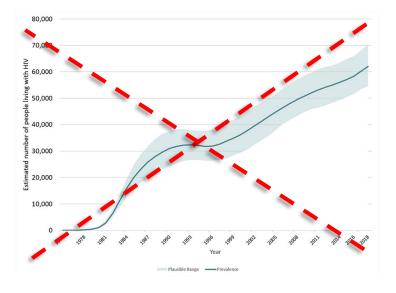
Data and maps

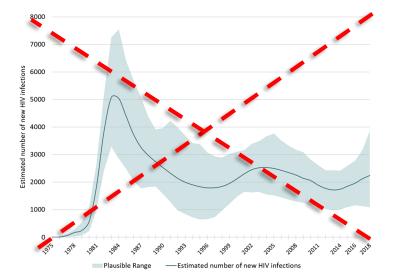
Surveillance


Laboratory network

HIV drug resistance

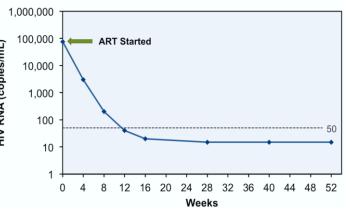
Over the past decade, the world has witnessed an unprecedented increase in the use of antiretroviral therapy (ART), which has saved the lives of tens of millions of people living with HIV/AIDS. At the end of 2021, 28.7 million people, out of an estimated 38.4 million people living with HIV, were receiving ART globally.


Increased use of HIV medicines has been accompanied by the emergence of HIV drug resistance – the levels of which have steadily increased in recent years.


HIV drug resistance is caused by changes in the genetic structure of HIV that affect the ability of drugs to block the replication of the virus. All current antiretroviral drugs, including newer classes, are at risk of becoming partly or fully inactive due to the emergence of drug-resistant virus strains. If not prevented, HIV drug resistance can jeopardize the efficacy of antiretroviral drugs, resulting in increased numbers of HIV infections and HIV-associated morbidity and mortality.


infections and HIV-associated morbidity and mortality.

HIV drug resistance can increased numbers of HIV infections and HIV-associated morbidity and mortality.

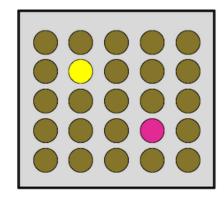


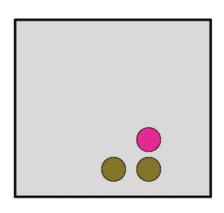
HIV Drug Resistance; Key Factors

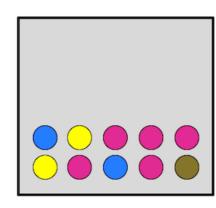
Main Goal

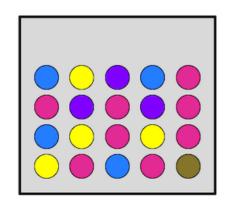
Main problem

HIV Drug Resistance, Basic Concepts

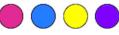

Antiretroviral Therapy

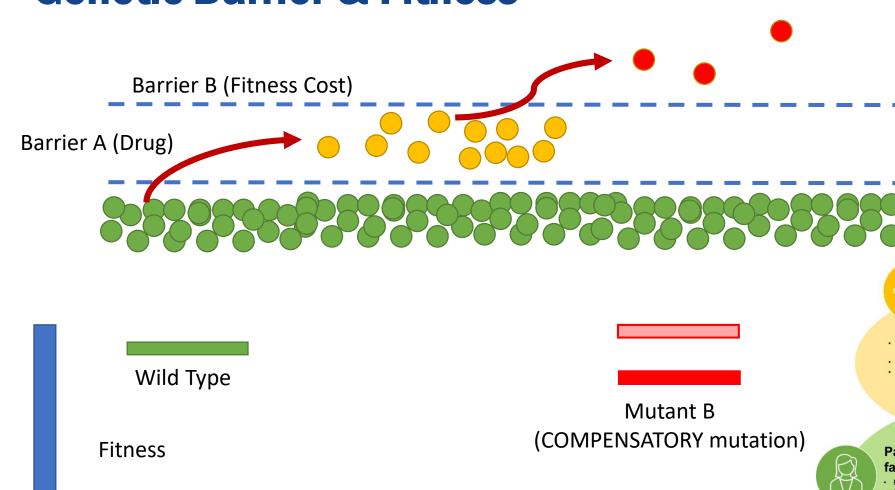

Pretreatment


Initial Response


Adherence Problems

Transmitted




Wild-Type HIV

Resistant HIV

Acquired

Selection of Mutants Genetic Barrier & Fitness

HIV-1 characteristics

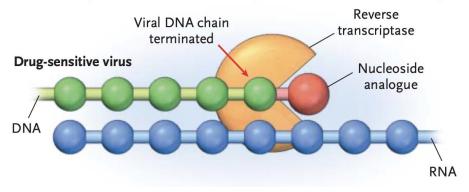
- · Error-prone genome replication (HIV RT has no proofreading activity, resulting in 10⁻⁵-10⁻³ errors/base pair/cycle)82
- Genetic recombination (1.35 × 10⁻³ events/nucleotide/round of infection)⁸³
- Rapid HIV replication (10¹⁰ virions/day in untreated PLWH)¹⁷

Pre-existing DRMs

factors/side effects/pill burden)

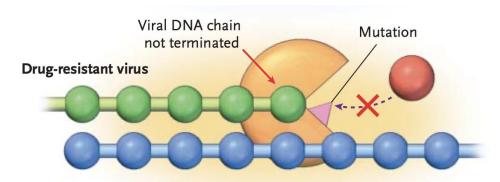
Patient-specific factors

- Prior treatment failure
- High pre-ART HIV RNA
- Low pre-ART CD4 counts
- · Comorbidities
- Food requirements
- Drug-drug interactions with concomitant medications
- Incomplete adherence
 - · Suboptimal concentration (<EC95) Inconsistent access to ART (availability/ · Long pharmacokinetic tail socio-economic causes/missed clinic
 - Missed doses (psychological
 - · Suboptimal potency

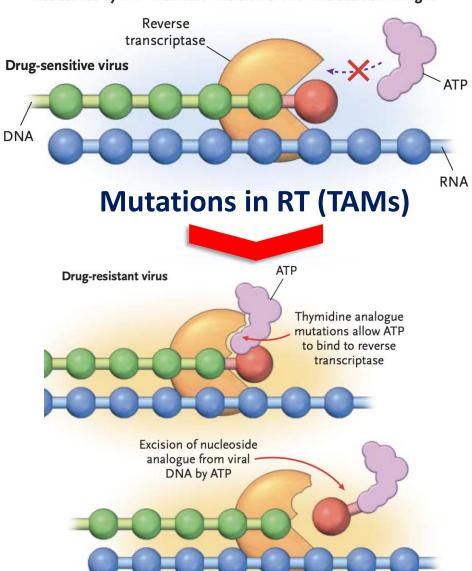

ART choice

· Low barrier to resistance

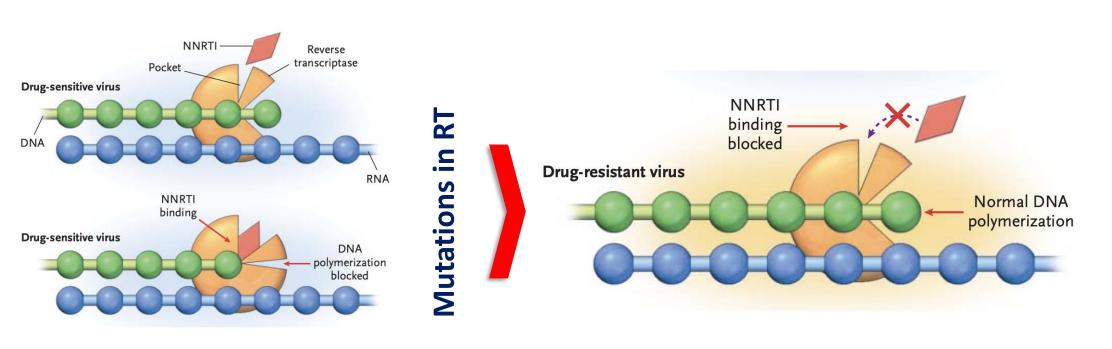
Mutant A

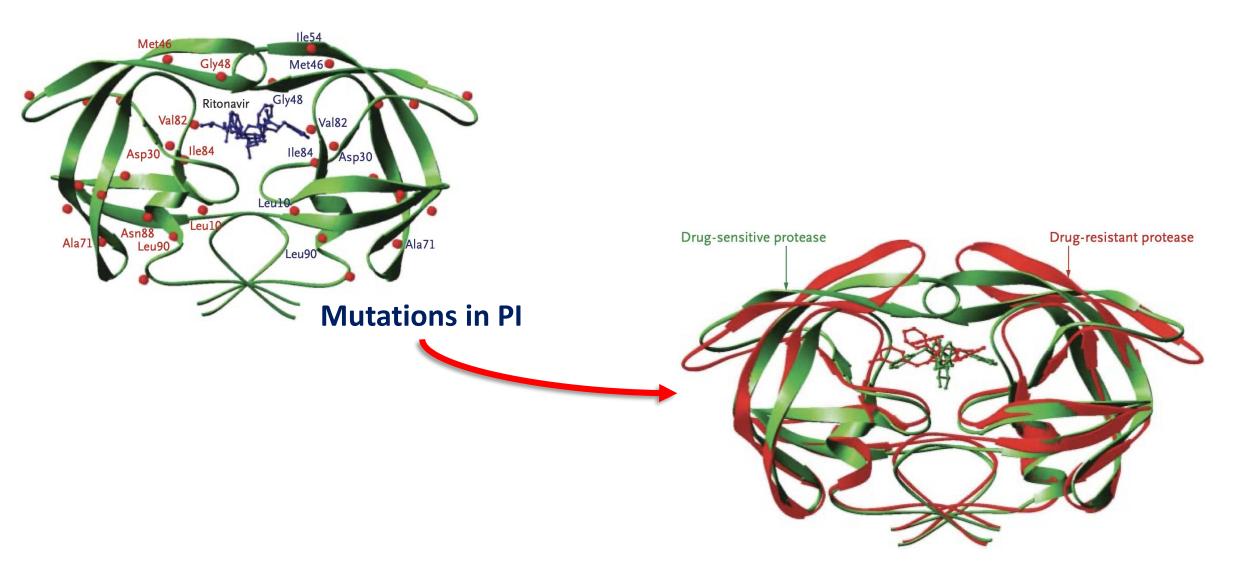

Mechanism of NRTI Resistance

Resistance by Interference with the Incorporation of a Nucleoside Analogue



Mutations in RT




Resistance by ATP-Mediated Excision of the Nucleoside Analogue

Mechanism of NNRTI Resistance

Mechanism of PI Resistance

New Classes, New Problems

Fostemsavir-CD4 attachment inhibitor

 A study published in 2020 analyzed HIV-1 env gp120 sequences from both ART-naïve and ART-treated patients and identified several genomic positions with mutations associated with decreased susceptibility to fostemsavir, however, the BRIGHTE trial did not find consistent associations between virologic failure and gp120 substitutions

Ibalizumab- post-attachment inhibitor

 Resistance to ibalizumab is conferred by decreased viral expression of specific binding sites in the HIV gp120 envelope protein. This mechanism of resistance was observed in the TMB-301 study for 8 out of 10 patients who had virologic failure or rebound at week 25 and showed a lower degree of susceptibility to ibalizumab than at baseline

Lenacapavir-long-acting capsid inhibitor

• Studies showed viral escape strategies of M66I and Q67H, a highly LEN-resistant but fitness-impaired HIV-1 mutant.

https://www.iasusa.org/hiv-drug-resistance/hiv-drug-resistance-mutations/

Drug Resistance Mutations Chart

Download

A current list of mutations associated with clinical resistance to HIV and the accompanying user notes, regularly revised and disseminated by the IAS-USA <u>Drug Resistance Mutations Group</u>, are epublished in <u>Drujos in Antiviral Medicine</u>*. The figures are also available as downloadable <u>PDF</u> and <u>PowerPoint Sildes</u>.

Request to Reprint Figures

The Drug Resistance Mutations Group welcomes interest in the mutations figures as an educational resource for practitioners and encourages making the material available to as broad an audience as possible. You do not need permission to reprint or distribute the figures for purely educational purposes, for instance, to post in a hospital or share in a classroom.

If you wish to reprint or distribute the mutations figures for commercial purposes, we require that you obtain permission. Please send your request to the IAS-USA via email to info@lasusa.org. Requests to reprint the material should include the name of the

https://hivdb.stanford.edu/hivdb/by-patterns/

НОМЕ	GENOTYPE-RX	GENOTYPE-PHENO	GENOTYPE-CLINICA	L HIVDB PROGRAM	VISTAS PROGRAM	ABOUT HIVDB	SUPPORT HIVDB!	
HIVdl	b Progran	n: Mutations	Analysis					
ducational	and as such it provid		highly transparent scoring	system that is hyperlinked to			le, non-nucleoside, and integrase inhi d description of the program as well a	
w: this p	rogram is now availa	able for analyzing SARS-CoV	7-2 mutations, FASTA, and	FASTQ (NGS) sequences.				
D7	:	tions can be entered using eit	ther the text box or auto-su	gestion boxes. To use the tex			spaces. The consensus wildtype and	
			at a position, write both an	nino amino acids (an interven	ing slash is optional). Insertic	ons should be indicated	by "Insertion" and deletions by "Dele	etion".
optional			at a position, write both an	nino amino acids (an interven	ing slash is optional). Insertic	ons should be indicated	by "Insertion" and deletions by "Dele	etion".
optional	l. If there is a mixture	of more than one amino acid				ons should be indicated	by "Insertion" and deletions by "Dele	etion".
optional Orug disp By defaul	I. If there is a mixture lay options t, results will be show	of more than one amino acid	ckboxes for additional ARVs	(select all ARVs, revert to def	ault)			etion".
optional Orug disp By defaul	If there is a mixture alay options t, results will be show	of more than one amino acid on for checked ARVs. Use checked	ckboxes for additional ARVs	(select all ARVs, revert to def	ault)	ETR V NVP V RP	v	etion".
Drug disp By defaul	If there is a mixture alay options t, results will be show	of more than one amino acid	ckboxes for additional ARVs	(select all ARVs, revert to def	ault)	ETR V NVP V RP		etion".
e optional Drug disp By defaul NRTI:	If there is a mixture lay options t, results will be show ABC AZT	of more than one amino acid on for checked ARVs. Use checked FTC	ckboxes for additional ARVs	(select all ARVs, revert to def	ault)	ETR V NVP V RP	v	etion".
optional Drug disp By defaul NRTI:	If there is a mixture lay options t, results will be show ABC AZT	of more than one amino acid on for checked ARVs. Use checked FTC	ckboxes for additional ARVs	(select all ARVs, revert to def	ault)	ETR V NVP V RP	v	etion".
e optional Drug disp By defaul NRTI:	If there is a mixture lay options t, results will be show ABC AZT	of more than one amino acid on for checked ARVs. Use checked FTC	ckboxes for additional ARVs	(select all ARVs, revert to def NN Pi:	ault)	ETR V NVP V RP	v	etion".

